In kidney transplant biopsies, both inflammation and chronic changes are important features that predict long-term graft survival. Quantitative scoring of these features is important for transplant diagnostics and kidney research. However, visual scoring is poorly reproducible and labor-intensive. The goal of this study was to investigate the potential of convolutional neural networks (CNNs) to quantify inflammation and chronic features in kidney transplant biopsies.
A structure segmentation CNN and a lymphocyte detection CNN were applied on 125 whole-slide image pairs of PAS-, and CD3-stained slides. The CNN results were used to quantify healthy and sclerotic glomeruli, interstitial fibrosis, tubular atrophy, and inflammation both within non-atrophic and atrophic tubuli, and in areas of interstitial fibrosis. The computed tissue features showed high correlations with Banff lesion scores of five pathologists. Analyses on a small subset showed a moderate correlation towards higher CD3+ cell density within scarred regions and higher CD3+ cell count inside atrophic tubuli correlated with long-term change of estimated glomerular filtration rate.
The presented CNNs are valid tools to yield objective quantitative information on glomeruli number, fibrotic tissue, and inflammation within scarred and non-scarred kidney parenchyma in a reproducible fashion. CNNs have the potential to improve kidney transplant diagnostics and will benefit the community as a novel method to generate surrogate endpoints for large-scale clinical studies.