Publications of John-Melle Bokhorst

Papers in international journals

  1. P. Vendittelli, J. Bokhorst, E. Smeets, V. Kryklyva, L. Brosens, C. Verbeke and G. Litjens, "Automatic quantification of tumor-stroma ratio as a prognostic marker for pancreatic cancer", PLOS ONE, 2024;19:e0301969.
    Abstract DOI PMID
  2. T. Haddad, J. Bokhorst, M. Berger, L. Dobbelsteen, F. Simmer, F. Ciompi, J. Galon, J. Laak, F. Pagès, I. Zlobec, A. Lugli and I. Nagtegaal, "Combining immunoscore and tumor budding in colon cancer: an insightful prognostication based on the tumor-host interface", Journal of Translational Medicine, 2024;22.
    Abstract DOI
  3. N. Brouwer, A. Khan, J. Bokhorst, F. Ayatollahi, J. Hay, F. Ciompi, F. Simmer, N. Hugen, J. de Wilt, M. Berger, A. Lugli, I. Zlobec, J. Edwards and I. Nagtegaal, "The complexity of shapes; how the circularity of tumor nodules impacts prognosis in colorectal cancer", Modern Pathology, 2023:100376.
    Abstract DOI PMID
  4. J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images", Scientific Reports, 2023;13:8398.
    Abstract DOI PMID Cited by ~5
  5. J. Bokhorst, I. Nagtegaal, I. Zlobec, H. Dawson, K. Sheahan, F. Simmer, R. Kirsch, M. Vieth, A. Lugli, J. van der Laak and F. Ciompi, "Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer", Cancers, 2023;15(7):2079.
    Abstract DOI PMID Cited by ~7
  6. M. Smit, F. Ciompi, J. Bokhorst, G. van Pelt, O. Geessink, H. Putter, R. Tollenaar, J. van Krieken, W. Mesker and J. van der Laak, "Deep learning based tumor-stroma ratio scoring in colon cancer correlates with microscopic assessment", Journal of Pathology Informatics, 2023.
    Abstract DOI Cited by ~4
  7. J. Bokhorst, F. Ciompi, S. Öztürk, A. Oguz Erdogan, M. Vieth, H. Dawson, R. Kirsch, F. Simmer, K. Sheahan, A. Lugli, I. Zlobec, J. van der Laak and I. Nagtegaal, "Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer", Modern Pathology, 2023;36:100233.
    Abstract DOI Cited by ~2
  8. C. Mercan, M. Balkenhol, R. Salgado, M. Sherman, P. Vielh, W. Vreuls, A. Polonia, H. Horlings, W. Weichert, J. Carter, P. Bult, M. Christgen, C. Denkert, K. van de Vijver, J. Bokhorst, J. van der Laak and F. Ciompi, "Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer.", NPJ breast cancer, 2022;8(1):120.
    Abstract DOI PMID Cited by ~9
  9. N. Marini, S. Marchesin, S. Otalora, M. Wodzinski, A. Caputo, M. van Rijthoven, W. Aswolinskiy, J. Bokhorst, D. Podareanu, E. Petters, S. Boytcheva, G. Buttafuoco, S. Vatrano, F. Fraggetta, J. van der Laak, M. Agosti, F. Ciompi, G. Silvello, H. Muller and M. Atzori, "Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations.", NPJ digital medicine, 2022;5(1):102.
    Abstract DOI PMID Cited by ~31
  10. T. Haddad, A. Lugli, S. Aherne, V. Barresi, B. Terris, J. Bokhorst, S. Brockmoeller, M. Cuatrecasas, F. Simmer, H. El-Zimaity, J. Fléjou, D. Gibbons, G. Cathomas, R. Kirsch, T. Kuhlmann, C. Langner, M. Loughrey, R. Riddell, A. Ristimäki, S. Kakar, K. Sheahan, D. Treanor, J. van der Laak, M. Vieth, I. Zlobec and I. Nagtegaal, "Improving tumor budding reporting in colorectal cancer: a Delphi consensus study", Virchows Archiv, 2021;479:459-469.
    Abstract DOI PMID Cited by ~27
  11. T. de Bel, J. Bokhorst, J. van der Laak and G. Litjens, "Residual cyclegan for robust domain transformation of histopathological tissue slides.", Medical Image Analysis, 2021;70:102004.
    Abstract DOI PMID Download Cited by ~61
  12. J. Bokhorst, A. Blank, A. Lugli, I. Zlobec, H. Dawson, M. Vieth, L. Rijstenberg, S. Brockmoeller, M. Urbanowicz, J. Flejou, R. Kirsch, F. Ciompi, J. van der Laak and I. Nagtegaal, "Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning", Modern Pathology, 2019.
    Abstract DOI PMID Cited by ~32
  13. D. Tellez, G. Litjens, P. Bándi, W. Bulten, J. Bokhorst, F. Ciompi and J. van der Laak, "Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology", Medical Image Analysis, 2019;58:101544.
    Abstract DOI PMID Cited by ~385

Preprints

  1. J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Automated risk classification of colon biopsies based on semantic segmentation of histopathology images", arXiv:2109.07892, 2021.
    Abstract DOI arXiv Cited by ~1

Papers in conference proceedings

  1. C. Lems, D. Geijs, J. Bokhorst, M. Sülter, L. van Eekelen and F. Ciompi, "Color Deconvolution for Color-Agnostic and Cross-Modality Analysis of Immunohistochemistry Whole-Slide Images with Deep Learning", 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024:1-4.
    Abstract DOI
  2. P. Vendittelli, J. Bokhorst, E. Smeets, V. Kryklyva, L. Brosens, C. Verbeke and G. Litjens, "Automatic quantification of TSR as a prognostic marker for pancreatic cancer.", Medical Imaging with Deep Learning, 2023.
    Abstract Url
  3. L. Studer, J. Bokhorst, F. Ciompi, A. Fischer and H. Dawson, "Building-T-cell score is a potential predictor for more aggressive treatment in pT1 colorectal cancers", Proceedings of the ECDP 2022 18th European Congress on Digital Pathology, 2022.
    Abstract
  4. J. Bokhorst, H. Pinckaers, P. van Zwam, I. Nagetgaal, J. van der Laak and F. Ciompi, "Learning from sparsely annotated data for semantic segmentation in histopathology images", Medical Imaging with Deep Learning, 2019;102:81-94.
    Abstract Url Cited by ~36
  5. J. Bokhorst, L. Rijstenberg, D. Goudkade, I. Nagtegaal, J. van der Laak and F. Ciompi, "Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learning", Computational Pathology and Ophthalmic Medical Image Analysis, 2018.
    Abstract DOI Cited by ~11

Abstracts

  1. J. Bokhorst, I. Nagtegaal, I. Zlobec, A. Lugli, M. Vieth, R. Kirsch, J. van der Laak and F. Ciompi, "Deep learning based tumor bud detection in pan-cytokeratin stained colorectal cancer whole-slide images", European Congress of Pathology, 2020.
    Abstract
  2. L. Studer, J. Bokhorst, I. Zlobec, A. Lugli, A. Fischer, F. Ciompi, J. van der Laak, I. Nagtegaal and H. Dawson, "Validation of computer-assisted tumour-bud and T-cell detection in pT1 colorectal cancer", European Congress of pathology, 2020.
    Abstract
  3. J. Bokhorst, F. Ciompi, I. Zlobec, A. Lugli, M. Vieth, R. Kirsch, J. van der Laak and I. Nagtegaal, "Computer-assisted hot-spot selection for tumor budding assessment in colorectal cancer", European Congress of Pathology, 2020.
    Abstract
  4. T. Haddad, N. Farahani, J. Bokhorst, F. Doubrava-Simmer, F. Ciompi, I. Nagtegaal and J. van der Laak, "A Colorectal Carcinoma in 3D: Merging Knife-Edge Scanning Microscopy and Deep Learning", EACR, 2019.
    Abstract
  5. J. Bokhorst, H. Dawson, A. Blank, I. Zlobec, A. Lugli, M. Vieth, R. Kirsch, M. Urbanowicz, S. Brockmoeller, J. Flejou, L. Rijstenberg, J. van der Laak, F. Ciompi and I. Nagtegaal, "Assessment of tumor buds in colorectal cancer. A large-scale international digital observer study", European Congress of Pathology, 2019.
    Abstract

PhD theses

  1. J. Bokhorst, "Hidden in plain sight. Automatic detection of tumor budding in digital pathology images of colorectal cancer", PhD thesis, 2024.
    Abstract Url