AbstractWhole-mount sectioning is a technique in histopathology where a full slice of tissue, such as a transversal cross-section of a prostate specimen, is prepared on a large microscope slide without further sectioning into smaller fragments. Although this technique can offer improved correlation with pre-operative imaging and is paramount for multimodal research, it is not commonly employed due to its technical difficulty, associated cost and cumbersome integration in (digital) pathology workflows. In this work, we present a computational tool named PythoStitcher which reconstructs artificial whole-mount sections from digitized tissue fragments, thereby bringing the benefits of whole-mount sections to pathology labs currently unable to employ this technique. Our proposed algorithm consists of a multi-step approach where it (i) automatically determines how fragments need to be reassembled, (ii) iteratively optimizes the stitch using a genetic algorithm and (iii) efficiently reconstructs the final artificial whole-mount section on full resolution (0.25 um/pixel). PythoStitcher was validated on a total of 198 cases spanning five datasets with a varying number of tissue fragments originating from different organs from multiple centers. PythoStitcher successfully reconstructed the whole-mount section in 86-100% of cases for a given dataset with a residual registration mismatch of 0.65-2.76 mm on automatically selected landmarks. It is expected that our algorithm can aid pathology labs unable to employ whole-mount sectioning through faster clinical case evaluation and improved radiology-pathology correlation workflows.