Publications of Thomas de Bel

Papers in international journals

  1. A. van der Kamp, T. de Bel, L. van Alst, J. Rutgers, M. van den Heuvel-Eibrink, A. Mavinkurve-Groothuis, J. van der Laak and R. de Krijger, "Automated Deep Learning-Based Classification of Wilms Tumor Histopathology", Cancers, 2023;15:2656.
    Abstract DOI PMID
  2. J. Ogony, T. de Bel, D. Radisky, J. Kachergus, E. Thompson, A. Degnim, K. Ruddy, T. Hilton, M. Stallings-Mann, C. Vachon, T. Hoskin, M. Heckman, R. Vierkant, L. White, R. Moore, J. Carter, M. Jensen, L. Pacheco-Spann, J. Henry, A. Storniolo, S. Winham, J. van der Laak and M. Sherman, "Towards defining morphologic parameters of normal parous and nulliparous breast tissues by artificial intelligence", Breast Cancer Research, 2022;24.
    Abstract DOI PMID Cited by ~1
  3. M. Sherman, T. de Bel, M. Heckman, L. White, J. Ogony, M. Stallings-Mann, T. Hilton, A. Degnim, R. Vierkant, T. Hoskin, M. Jensen, L. Pacheco-Spann, J. Henry, A. Storniolo, J. Carter, S. Winham, D. Radisky and J. van der Laak, "Serum hormone levels and normal breast histology among premenopausal women", Breast Cancer Research and Treatment, 2022;194:149-158.
    Abstract DOI PMID
  4. A. van der Kamp, T. Waterlander, T. de Bel, J. van der Laak, M. van den Heuvel-Eibrink, A. Mavinkurve-Groothuis and R. de Krijger, "Artificial Intelligence in Pediatric Pathology: The Extinction of a Medical Profession or the Key to a Bright Future?", Pediatric and Developmental Pathology, 2022;25:380-387.
    Abstract DOI PMID Cited by ~4
  5. T. de Bel, G. Litjens, J. Ogony, M. Stallings-Mann, J. Carter, T. Hilton, D. Radisky, R. Vierkant, B. Broderick, T. Hoskin, S. Winham, M. Frost, D. Visscher, T. Allers, A. Degnim, M. Sherman and J. van der Laak, "Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning", npj Breast Cancer, 2022;8.
    Abstract DOI PMID Cited by ~5
  6. T. de Bel, J. Bokhorst, J. van der Laak and G. Litjens, "Residual cyclegan for robust domain transformation of histopathological tissue slides.", Medical Image Analysis, 2021;70:102004.
    Abstract DOI PMID Download Cited by ~61
  7. M. Balkenhol, F. Ciompi, Z. Swiderska-Chadaj, R. van de Loo, M. Intezar, I. Otte-Holler, D. Geijs, J. Lotz, N. Weiss, T. de Bel, G. Litjens, P. Bult and J. van der Laak, "Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.", The Breast, 2021;56:78-87.
    Abstract DOI PMID Cited by ~20
  8. Z. Swiderska-Chadaj, T. de Bel, L. Blanchet, A. Baidoshvili, D. Vossen, J. van der Laak and G. Litjens, "Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer", Scientific Reports, 2020;10(1):14398.
    Abstract DOI PMID Download Cited by ~47
  9. W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. de Hulsbergen-van Kaa and G. Litjens, "Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study", Lancet Oncology, 2020;21(2):233-241.
    Abstract DOI PMID arXiv Algorithm Download Cited by ~459
  10. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep-learning based histopathologic assessment of kidney tissue", Journal of the American Society of Nephrology, 2019;30(10):1968-1979.
    Abstract DOI PMID Cited by ~215
  11. A. Setio, A. Traverso, T. de Bel, M. Berens, C. Bogaard, P. Cerello, H. Chen, Q. Dou, M. Fantacci, B. Geurts, R. Gugten, P. Heng, B. Jansen, M. de Kaste, V. Kotov, J. Lin, J. Manders, A. Sonora-Mengana, J. Garcia-Naranjo, E. Papavasileiou, M. Prokop, M. Saletta, C. Schaefer-Prokop, E. Scholten, L. Scholten, M. Snoeren, E. Torres, J. Vandemeulebroucke, N. Walasek, G. Zuidhof, B. Ginneken and C. Jacobs, "Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge", Medical Image Analysis, 2017;42:1-13.
    Abstract DOI PMID arXiv Download Cited by ~843

Papers in conference proceedings

  1. T. de Bel, M. Hermsen, J. Kers, J. van der Laak and G. Litjens, "Stain-Transforming Cycle-Consistent Generative Adversarial Networks for Improved Segmentation of Renal Histopathology", Medical Imaging with Deep Learning, 2019.
    Abstract Url Cited by ~75
  2. T. de Bel, M. Hermsen, J. van der Laak, G. Litjens, B. Smeets and L. Hilbrands, "Automatic segmentation of histopathological slides of renal tissue using deep learning", Medical Imaging 2018: Digital Pathology, 2018.
    Abstract DOI Cited by ~48

Abstracts

  1. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep learning-based histopathological assessment of renal tissue", American Society of Nephrology Kidney Week 2019, 2019.
    Abstract
  2. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, B. Smeets, L. Hilbrands and J. van der Laak, "Glomerular detection, segmentation and counting in PAS-stained histopathological slides using deep learning", Dutch Federation of Nephrology (NfN) Fall Symposium, 2018.
    Abstract
  3. M. Hermsen, T. de Bel, M. van de Warenburg, J. Knuiman, E. Steenbergen, G. Litjens, B. Smeets, L. Hilbrands and J. van der Laak, "Automatic segmentation of histopathological slides from renal allograft biopsies using artificial intelligence", Dutch Federation of Nephrology (NfN) Fall Symposium, 2017.
    Abstract

Other publications

  1. T. de Bel, M. Hermsen, G. Litjens and J. van der Laak, "Structure Instance Segmentation in Renal Tissue: A Case Study on Tubular Immune Cell Detection", Computational Pathology and Ophthalmic Medical Image Analysis, 2018:112-119.
    Abstract DOI Cited by ~8